パラメトリックスピーカを用いた音響空間制御システムの開発

Development of acoustic space control system using parametric loudspeaker

中山 雅人 (Masato NAKAYAMA)

1. 研究内容

本研究課題は、科研費基盤研究(C)に採択されている「パラメトリックスピーカを用 いた音響測距に基づくピンスポット音提示システムの開発」の中でもパラメトリックス ピーカを用いたシステム開発に重点を置いて研究を実施した. 本研究課題では、ある特 定の領域にのみ音波を放射できるパラメトリックスピーカと位相干渉を利用した音響 測距法を組み合わせて, 自動的に人を検知し, その人に対してピンスポットで音を提示 するシステムを実現する. 特に, 近距離にある物体も検知可能な音響測距法をパラメト リックスピーカに応用し、人の位置を検出する手法に発展させる. 研究代表者はこれま で可聴音の位相干渉に基づく音響測距法を提案し、可聴音を用いて対象物までの距離を 推定し、物体を検出する技術を開発してきた. さらに、パラメトリックスピーカにおい て「キャリア波」と「側帯波」を分離放射することで,特定の領域にピンスポットで音を 提示する極小領域オーディオスポット技術を世界に先駆けて開発した実績を有する. こ れらの技術を発展的に拡張・融合し、さらに社会における活用シーン(たとえば、自動 車など)に具体的に応用することを検討することで、人の自動検知を備えたピンスポッ ト音提示システムの開発を試みた. その結果, 学術論文2件, 査読付き国際会議プロシー ディングス2件,国内の査読あり学会発表2件,国内の査読なし学会発表10件,アブス トラクト査読の国際会議発表6件の研究成果が得られた.

2. 研究成果(一部抜粋)

- ① 藤井敏弘,有吉輝,中山雅人,西浦敬信,"可変型気体層レンズを用いたパラメトリックスピーカの最大復調距離制御,"電子情報通信学会論文誌 A, Vol.J102-A, No.12, pp.299-309, (2019).
- ② N. Shimada, M. Nakayama, and T. Nishiura, ``Acoustic Space-Sharing Based on Bass Tempo Synchronization with Parametric Loudspeakers and Subwoofer," IEEE GCCE 2019, pp.870-873, (2019).
- 3 M. Shimokata, M. Nakayama, and T. Nishiura, "High Attenuated Audio-Beam Based on Near-Focused Sideband Wave with Parametric Array Loudspeakers," IEEE GCCE 2019, pp.866-869, (2019).
- ④ Y. Ogami, M. Nakayama, and T. Nishiura, "Virtual sound source construction based on radiation direction control using multiple parametric array loudspeakers," The Journal of the Acoustical Society of America, Vol.146, Issue 2, pp.1314-1325, (2019).